Diffusion in Long-Range Correlated Ornstein-Uhlenbeck Flows

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 8 Isotropic Ornstein - Uhlenbeck Flows

Isotropic Brownian flows (IBFs) are a fairly natural class of stochastic flows which has been studied extensively by various authors. Their rich structure allows for explicit calculations in several situations and makes them a natural object to start with if one wants to study more general stochastic flows. Often the intuition gained by understanding the problem in the context of IBFs transfers...

متن کامل

Ornstein - Uhlenbeck Process

Also, a process {Yt : t ≥ 0} is said to have independent increments if, for all t0 < t1 < . . . < tn, the n random variables Yt1 − Yt0 , Yt2 − Yt1 , ..., Ytn − Ytn−1 are independent. This condition implies that {Yt : t ≥ 0} is Markovian, but not conversely. The increments are further said to be stationary if, for any t > s and h > 0, the distribution of Yt+h− Ys+h is the same as the distributio...

متن کامل

Multivariate Generalized Ornstein-Uhlenbeck Processes

De Haan and Karandikar [12] introduced generalized Ornstein–Uhlenbeck processes as one-dimensional processes (Vt)t≥0 which are basically characterized by the fact that for each h > 0 the equidistantly sampled process (Vnh)n∈N0 satisfies the random recurrence equation Vnh = A(n−1)h,nhV(n−1)h + B(n−1)h,nh, n ∈ N, where (A(n−1)h,nh, B(n−1)h,nh)n∈N is an i.i.d. sequence with positive A0,h for each ...

متن کامل

Markov-modulated Ornstein-Uhlenbeck processes

In this paper we consider an Ornstein-Uhlenbeck (ou) process (M(t))t>0 whose parameters are determined by an external Markov process (X(t))t>0 on a nite state space {1, . . . , d}; this process is usually referred to as Markov-modulated Ornstein-Uhlenbeck (or: mmou). We use stochastic integration theory to determine explicit expressions for the mean and variance of M(t). Then we establish a sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2002

ISSN: 1083-6489

DOI: 10.1214/ejp.v7-119